

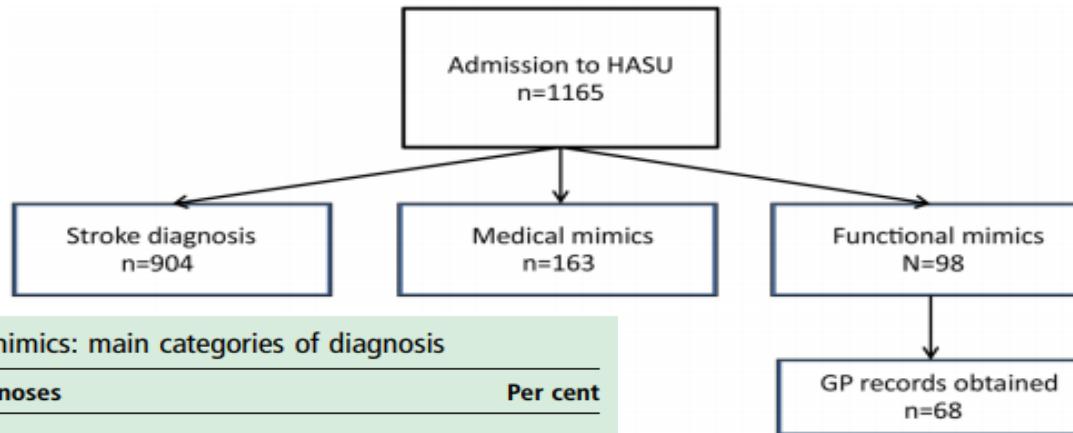
คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

Acute Caudate Vascular Lesions

Nattaporn Piyaamornpan

Introduction

- Stroke mimics and stroke chameleons
- Vascular and tomographic lesions
- Clinical presentation
- Risk factors and etiology


Introduction

- Stroke should be suspected in any patient with sudden onset neurological symptoms, confusion or falls even if the symptoms initially appear to be unusual for stroke.
- Common stroke mimics include seizure, migraine, sepsis, syncope, and metabolic and functional disorders
- Stroke can present as a chameleon with confusion, reduced conscious level or non-specific symptoms such as vertigo, unsteadiness and reduced conscious level.

Introduction

Stroke mimics admitted to a hyperacute stroke unit

Table 2 Medical mimics: main categories of diagnosis

Medical mimics—diagnoses	Per cent
Previous stroke with functional decompensation	15
Epilepsy	14
Migraine	13
Peripheral vestibular disturbance	9
Cranial neuropathy (including Bell's Palsy)	8
Space occupying lesions (eg, haematoma, tumours)	8
Metabolic or infection	7
Other Neurological (eg, MS)	6
Unclear	4
Cardiac	2
Alcohol related	2
Dementia	2
Ocular pathology	2
Transient amnesia of uncertain cause	2
Syncope	2
Miscellaneous (eg, polycythaemia, giant cell arteritis, drug reaction, antiphospholipid syndrome)	4

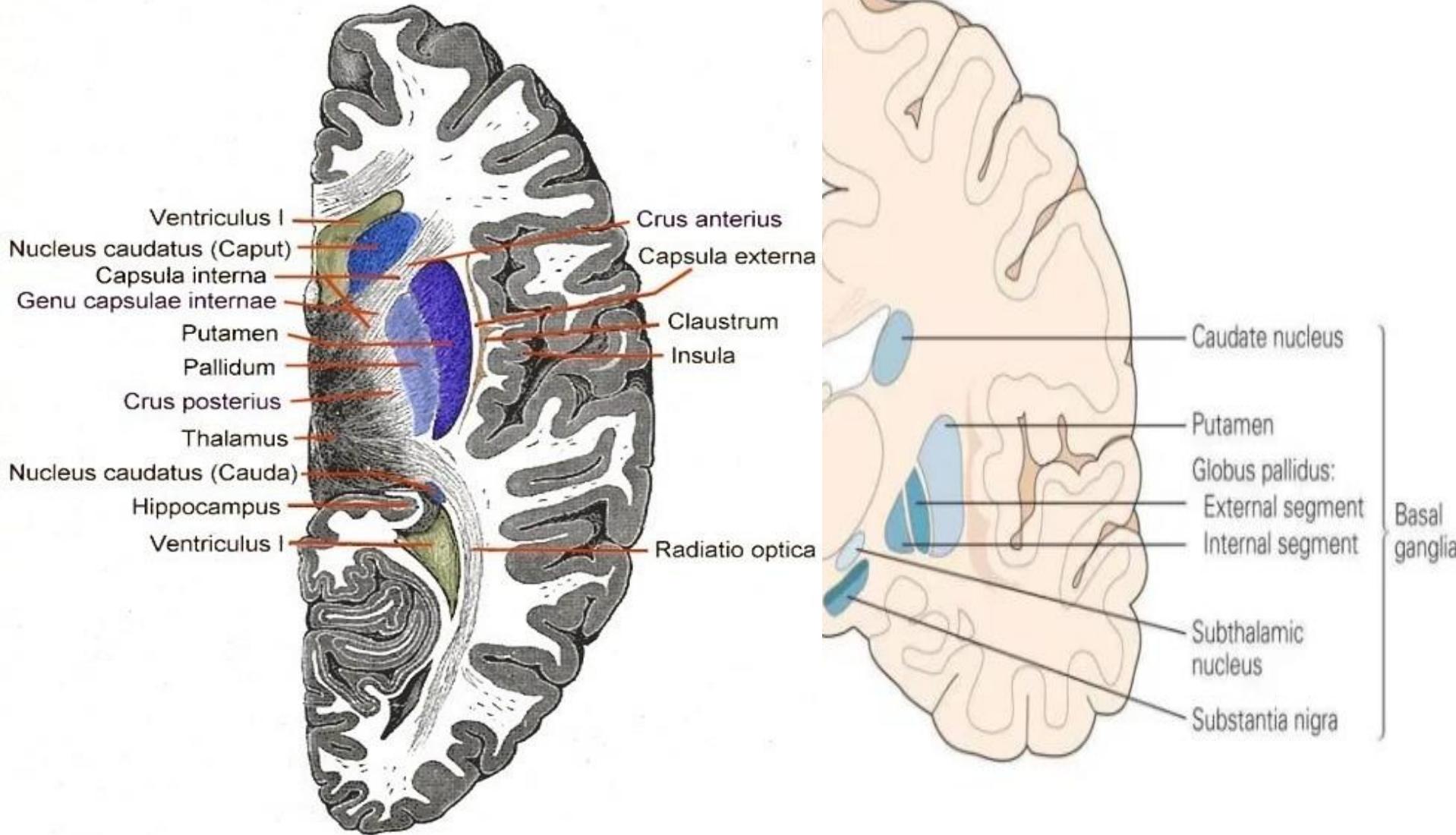
Table 4 Follow-up data on functional mimics.

Psychiatric disorder	Percentage (n=32) %
Depression	(11) 34.4
'Stress-related condition'	(10) 31.25
Anxiety disorder	(5) 15.6
Somatoform pain/somatisation	(2) 6.25
Psychiatric complication of epilepsy/Parkinson's	(2) 6.25
Fatigue	(2) 6.25
Body image disorder	(1) 3.0

*One patient had 2 diagnoses.
Psychiatric diagnosis in GP records.
GP, general practitioner.

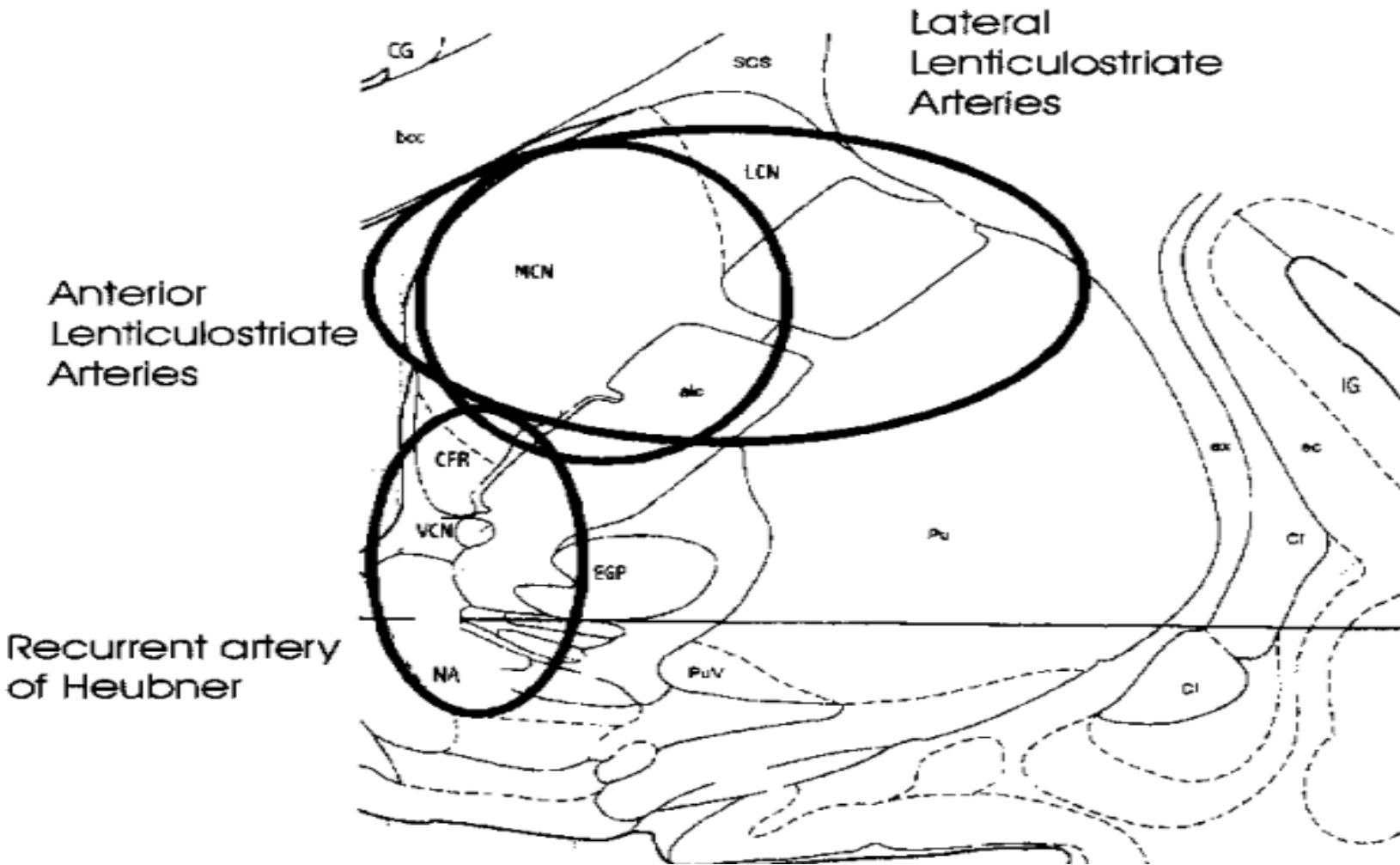
Introduction

- Missed diagnoses and stroke chameleons
 - The most common conditions for which stroke is mistaken are delirium, syncope, hypertensive emergencies or systemic infection.
 - Acute vertigo
 - Decreased level of consciousness
 - Acute confusional state
 - Severe hypertension
 - The risk of misdiagnosis is higher in younger patients and those with either mild symptoms or coma.
 - 37% of posterior circulation strokes were initially missed compared with 16% of anterior circulation strokes.

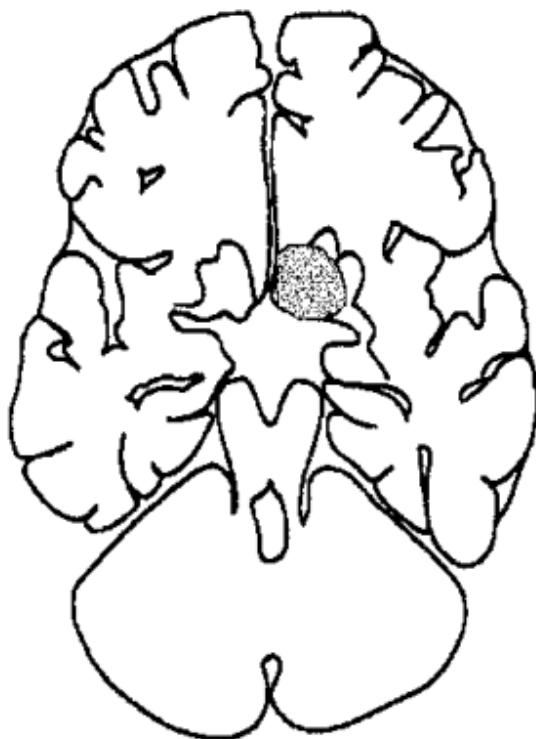

Introduction

- The role of neuroimaging
 - Negative CT does not exclude stroke
 - MRI can help in cases of diagnostic uncertainty as diffusion restriction is highly sensitive for acute ischemia.

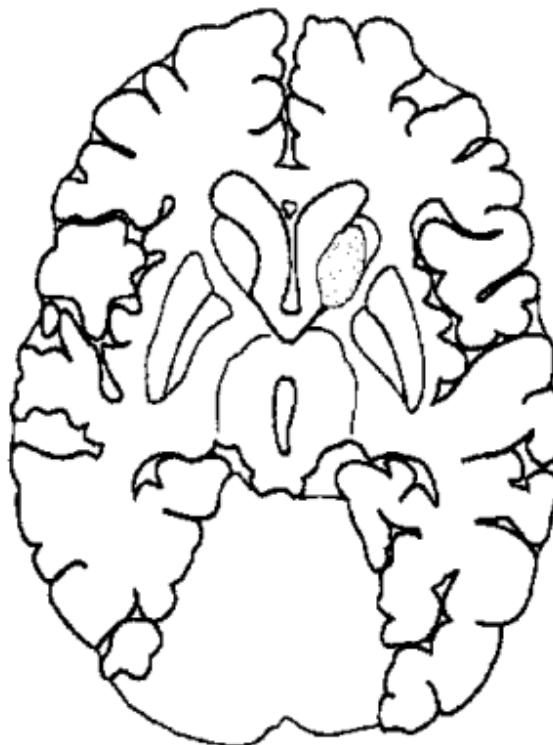
Technique	Uses/benefits	Pitfalls
Non-contrast CT head	Widely available and quick to perform High sensitivity for acute haemorrhage Specificity of 100% if ischaemia detected	Low sensitivity (39%) for ischaemia, especially in posterior fossa
CT angiogram	Non-invasive assessment of intracranial and extracranial circulation Can confirm large vessel occlusion to guide clot retrieval strategies in patients with high NIHSS scores	Unreliable in differentiating stroke from mimic (only a minority of strokes will have large artery occlusion)
Diffusion-weighted magnetic resonance imaging	Abnormalities on diffusion-weighted sequences strongly support diagnosis of stroke Sensitivity for detection of acute stroke up to 99% with specificity of 92%	Restricted diffusion can be seen in tumours, cerebral infections and following seizure activity Patient instability and claustrophobia can limit suitability of scan Requires more time for scanning than CT

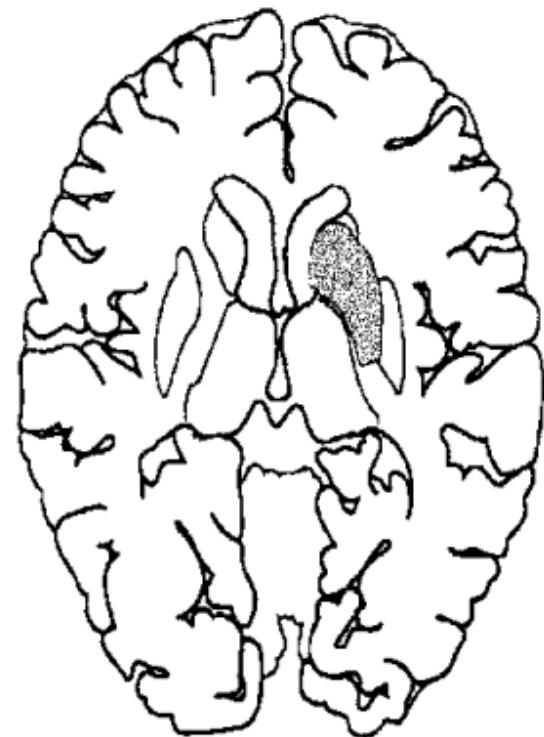


Introduction

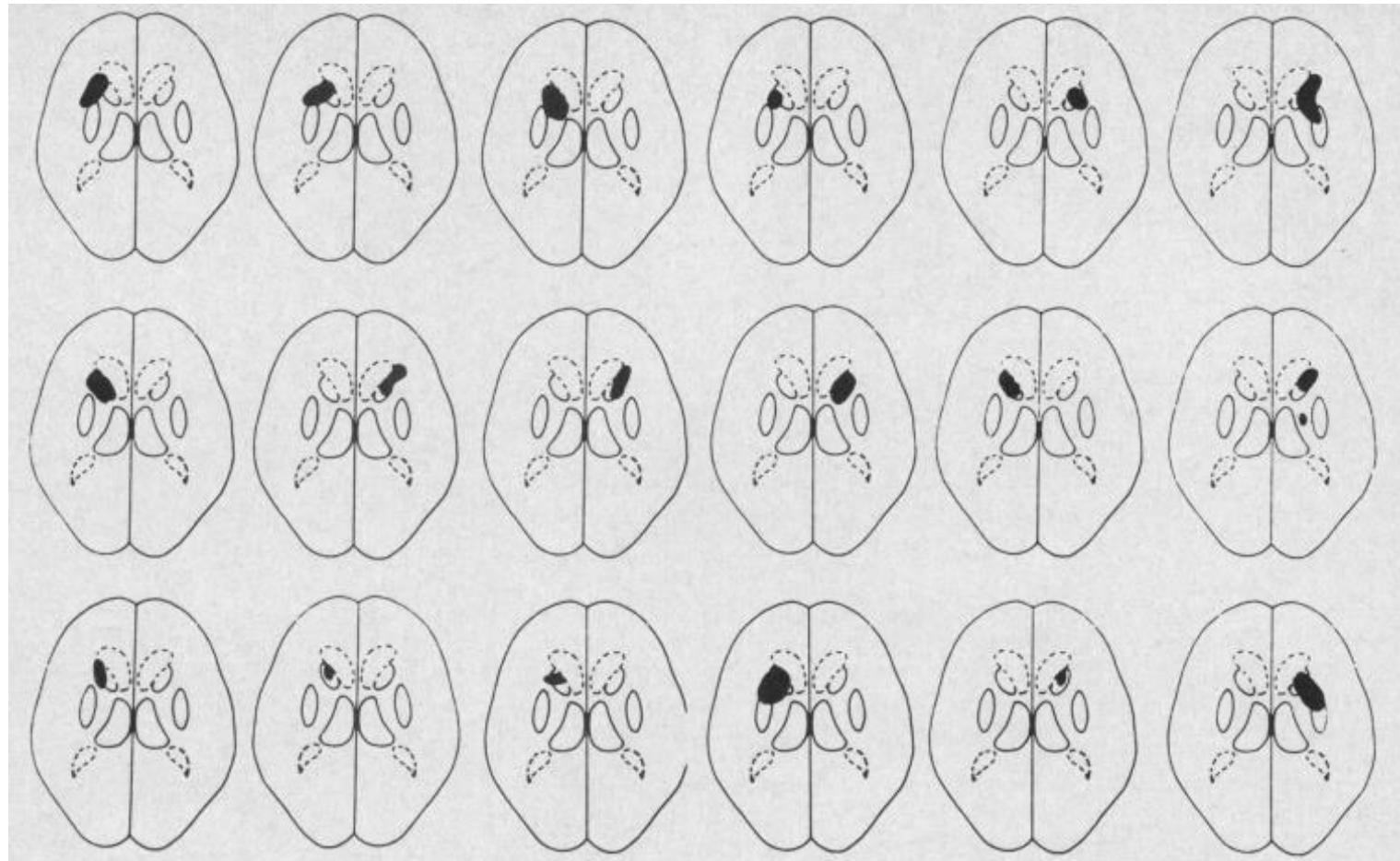


Introduction




Vascular Lesions

Recurrent artery of Heubner


Anterior Lenticulostriate Arteries

Lateral Lenticulostriate Arteries

Tomographic lesions

Caplan LR. Caudate infarcts. Arch Neurol. 1990

Topography of Infarcts

- Left caudate infarcts
- Right caudate infarcts
- Bilateral caudate infarcts

Clinical presentation

- Dysarthria
- Convulsion
- Motor
- Behavioral and cognitive abnormalities

Clinical presentation

TABLE 2. Clinical and Behavioral Findings and Prognosis of Patients With Caudate Infarct

	Unilateral Caudate Infarcts*	Bilateral Caudate Infarcts
No.	11/11	3
Dysarthria	5/5	2
Convulsion	2/0	0
Motor		
Face	2/0	0
Face, upper limb	2/3	0
Face, upper limb>lower limb	5/4	2
Chorea	0/1	0

TABLE 2. Clinical and Behavioral Findings and Prognosis of Patients With Caudate Infarct

	Unilateral Caudate Infarcts*	Bilateral Caudate Infarcts
Behavioral findings		
Confusion-disorientation	4/4	3
Abulia	4/5	1
Psychic akinesia	0/1	2
Restlessness	1/2	0
Nonfluent aphasia	3/0	1
Transcortical motor aphasia	1/0	0
Global aphasia	1/0	0
Motor neglect	0/3	1
Visuospatial neglect	0/2	0
Impaired conflictual tasks	3/2	2
Verbal amnesia	3/0	0
Visual amnesia	0/4	0
Visual-verbal amnesia	1/0	2
MMSE \leq 28	4/3	2
Depression	2/1	1

Dysarthria

- Abnormalities of the articulation of speech were very common, especially in patients with right sided caudate infarcts.

Motor

TABLE 2. Clinical and Behavioral Findings and Prognosis of Patients With Caudate Infarct

	Unilateral Caudate Infarcts*	Bilateral Caudate Infarcts
No.	11/11	3
Dysarthria	5/5	2
Convulsion	2/0	0
Motor		
Face	2/0	0
Face, upper limb	2/3	0
Face, upper limb>lower limb	5/4	2
Chorea	0/1	0

Table 1.—Motor Abnormalities

Weakness		No. of Patients
Severity	Location	
None		5
Slight		11
	Face, arm, and leg	7
	Face	2
	Mostly hand	1
	Arm and leg	1
Moderate		2
	Face, arm, and leg	2
Total		18

- The characteristics of motor deficits were facial and upper extremity weakness and clumsiness.
- Hemiparesis caused by a caudate nucleus lesion is considered nonpyramidal hemimotor syndrome

Behavioral and Cognitive Abnormality

- **Abulia**
 - The most frequent behavioral abnormality was an inactive, slow, apathetic state
- **Restlessness and Hyperactivity**
 - Confused, restless, or hyperactive at some time during acute stroke

Table 2.—Cognitive and Behavioral Abnormalities

Deficit	No. of Patients	Side of Brain Lesion
None	4	2/8 left; 2/8 right
Abulia	10	6/10 left; 4/8 right
Agitation, hyperactivity	7	3/10 left; 4/8 right
Contralateral neglect	3	3/8 right
Language abnormalities	2	3/10 left

Behavioral and Cognitive Abnormality

- Contralateral Neglect
- Language Abnormalities
 - Stuttering
- Cognitive abnormalities
 - Poor memory, visual-spatial and constructional abnormalities

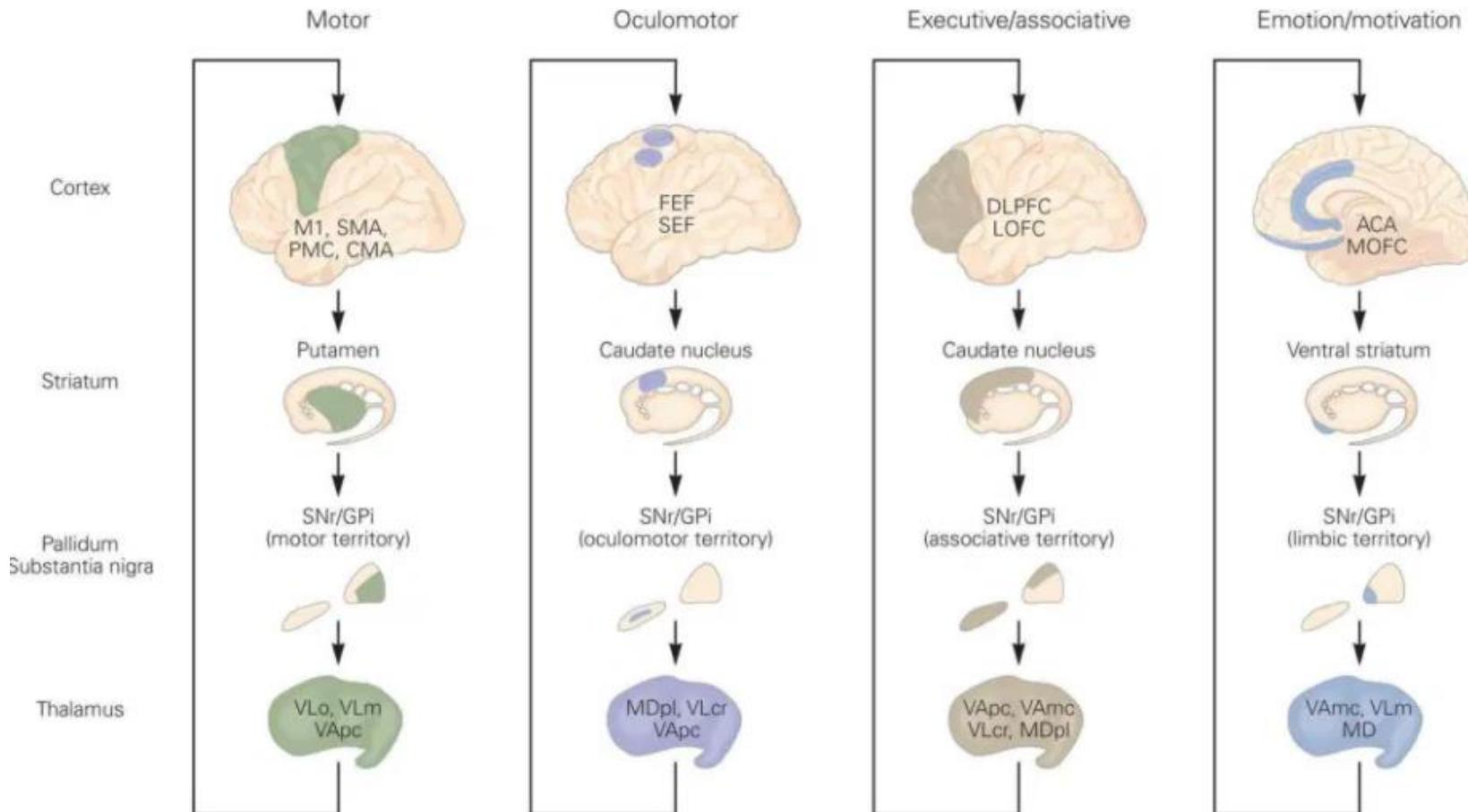
Table 1. Cognitive and behavioral abnormalities with caudate infarction

Study (No. of patients)	Left lesion		Right lesion	
	Caplan (18)	Kumral (25)*	Caplan (18)	Kumral (25)*
Behavioral findings				
Abulia	6/10	5/11	4/8	6/11
Confusion		7/11		7/11
Psychic akinesia		2/11		3/11
Restlessness		1/11		2/11
Agitation, hyperactivity	3/10			4/8
Depression		3/11		2/11
Cognition findings				
Memory impairment	2/10		0/8	
Verbal amnesia		3/11		0/11
Visual amnesia		0/11		4/11
Visual-verbal amnesia		3/11		2/11
Contralateral neglect	0/10	1/11	3/8	6/11
Nonfluent aphasia	1/10	4/11	0/8	1/11
Transcortical motor aphasia	1/10	1/11	0/8	0/11
Global aphasia		1/11		1/11

*3 patients had bilateral caudate infarcts in the study of Kumral et al. Caplan (18) (Caplan et al. [2]); Kumral (25) (Kumral et al. [1]).

Behavioral and Cognitive Abnormality

- One-third of patients with a left caudate lesion had verbal amnesia
- Right caudate lesion had visual amnesia
- Procedural and declarative memory may be associated with the left caudate nucleus.
- Visuospatial and motor neglect were present in one fourth of patients with a right caudate vascular lesion.


Table 1. Cognitive and behavioral abnormalities with caudate infarction

Study (No. of patients)	Left lesion		Right lesion	
	Caplan (18)	Kumral (25)*	Caplan (18)	Kumral (25)*
Behavioral findings				
Abulia	6/10	5/11	4/8	6/11
Confusion		7/11		7/11
Psychic akinesia		2/11		3/11
Restlessness		1/11		2/11
Agitation, hyperactivity	3/10			4/8
Depression		3/11		2/11
Cognition findings				
Memory impairment	2/10		0/8	
Verbal amnesia		3/11		0/11
Visual amnesia		0/11		4/11
Visual-verbal amnesia		3/11		2/11
Contralateral neglect	0/10	1/11	3/8	6/11
Nonfluent aphasia	1/10	4/11	0/8	1/11
Transcortical motor aphasia	1/10	1/11	0/8	0/11
Global aphasia		1/11		1/11

*3 patients had bilateral caudate infarcts in the study of Kumral et al. Caplan (18) (Caplan et al. [2]); Kumral (25) (Kumral et al. [1]).

Basal ganglia-thalamocortical circuit

Risk factors

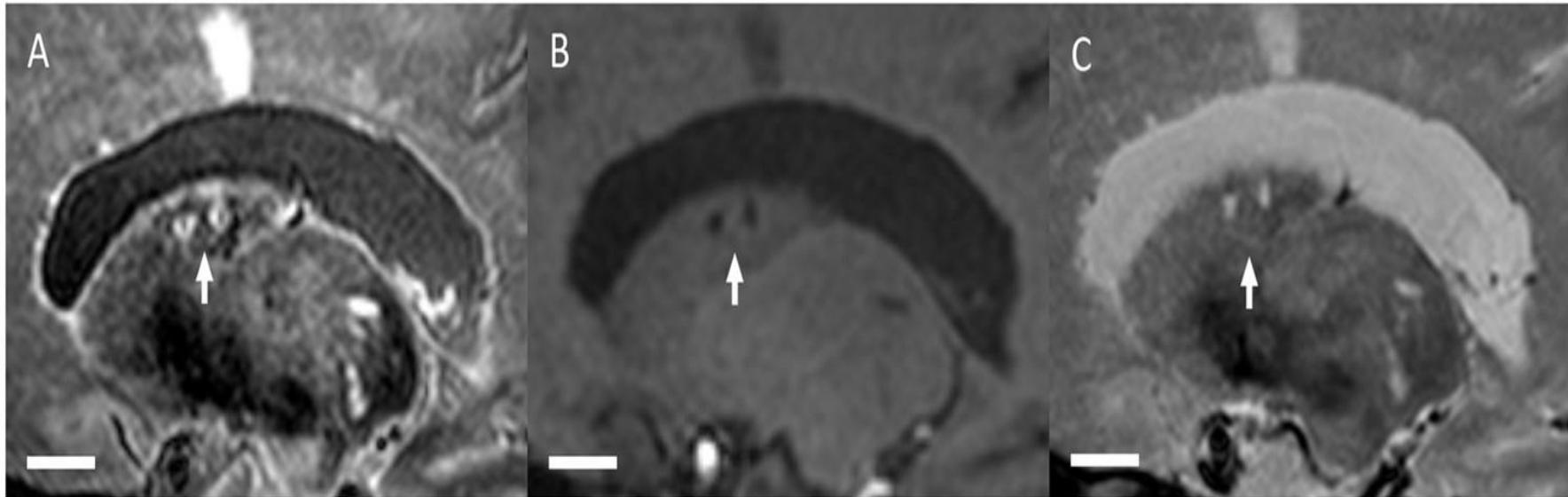
TABLE 1. Demographic Data, Risk Factors, and Cause of Infarct in Patients With Caudate Infarct

	Unilateral Caudate Infarcts*	Bilateral Caudate Infarcts
No.	11/11	3
Age (mean \pm SD), y	58 \pm 9/66 \pm 6	59 \pm 14
Sex (M/F)	10/1/6/5	3/0
Risk factors		
Hypertension	6/8	2
Diabetes mellitus	5/2	0
Hypercholesterolemia	3/4	1
Smoking	2/1	1
Atrial fibrillation	1/2	0
Myocardial infarct	3/0	2
Familial history of stroke	0/2	0
Transient ischemic attack	7/5	2

- Risk factors for penetrating artery and branch artery disease were prevalent. Fourteen patients (77%) were **hypertensive** and six patients (33%) had **diabetes mellitus**.

Cause of Infarct

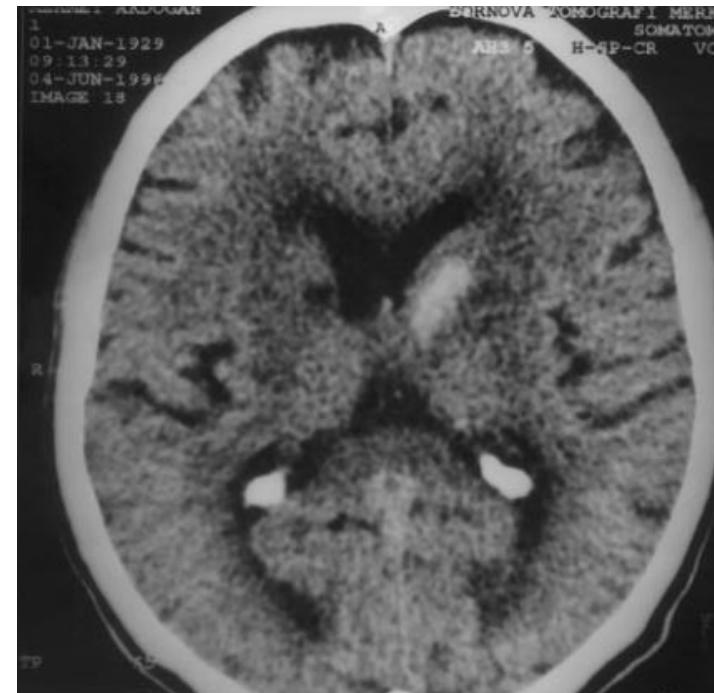
TABLE 1. Demographic Data, Risk Factors, and Cause of Infarct in Patients With Caudate Infarct


	Unilateral Caudate Infarcts*	Bilateral Caudate Infarcts
Presumed cause		
Large-artery disease	1/1	0
Small-artery disease	6/8	0
Cardioembolism	3/1	1
Mixed†	0/1	1
Syphilis	1/0	0
Unknown	0/0	1

- Small-artery disease
- Cardiac sources of embolism
- Ipsilateral internal carotid artery disease
- Mixed etiology

Cause of Infarct

- Small infarction



Two cavitated small infarcts (arrow) in the body of the left caudate nucleus in a 67-year-old female shown on sagittal FLAIR (a), T1-weighted (b) and T2-weighted images (c) of the 7T MRI scan. These lesions are hypointense with a hyperintense rim on the FLAIR image, hypointense on the T1-weighted image and hyperintense on the T2-weighted image. Scale bar indicates 10 mm.

Caudate hemorrhages

- Hypertension
- Arteriovenous malformation
- No cause of hemorrhage
 - ❖ Presentation with an altered level of consciousness (confusion-disorientation)
abulia, headache, **nuchal rigidity**
, Motor deficit conjugated eye deviation, dysarthria and disconjugated eye deviation

Caudate hemorrhages

TABLE 3. Risk Factors, Etiology, Clinical Features, and Prognosis of Patients With Caudate Hemorrhage

Patient No./ Age, y/Sex/ Hemorrhage Side	Risk Factors	Signs	Neuropsychological Findings	Nuclei Involved	Cause	Therapy	Outcome
26/78/M/R*	HT, DM	NR, headache, motor (face, UL, LL), CED	Visuospatial neglect, visual amnesia, depression	MCN, LCN, VCN, aic, SCS	HT	AE, AH	Dependent
27/57/M/R	HT	NR, headache	Confusion, abulia, disorientation	MCN, LCN, VCN	HT	AE	Independent
28/69/F/L*	None	NR, headache, dysarthria, motor (face, UL>LL), CED	Confusion, nonfluent aphasia	MCN, LCN, VCN, aic, antput	AVM	AE	Dependent
29/67/M/L	HT	Headache	Abulia, verbal amnesia, impaired conflictual tasks	MCN, LCN, VCN (L), MCN (R), old infarct	HT	None	Independent
30/41/M/L*	None	NR, headache, motor (face, UL>LL), disconjugated eye deviation, mydriasis	Abulia, nonfluent aphasia	MCN, LCN, aic	Unknown	AE	Dead (due to generalized vasospasm)
31/51/F/R	HT	Headache	Confusion, disorientation, restlessness	MCN, LCN	HT	AE	Independent

HT indicates hypertension; DM, diabetes mellitus; NR, nuchal rigidity; UL, upper limb; LL, lower limb; CED, conjugated eye deviation; SCS, subcallosal stratum; AE, antiedema treatment; AH, antihypertensive treatment; and AVM, arteriovenous malformation. Other abbreviations are as defined in Figure 1 and Figure 2 legends.

*Indicates patients with a score of ≤ 28 on the MMSE.

Take home points

- Stroke can present as a chameleon
- The clinical presentation of patients with caudate hemorrhage mimicked subarachnoid hemorrhage with or without motor and neuropsychological signs.
- The behavioral abnormalities were mostly due to medial, lateral, and ventral caudate subnuclei damage and coexisting lesion of the anterior limb of the internal capsule.

คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

THANK YOU

